Model-Based Vision System
by Object-Oriented Programming

AD-A195 819

Huey Chang, Katsushi Ikeuchi, and Takeo Kanade

CMU-RI-TR-88-3

DTIC

ELECTE g%
JUN 15 188 §

“H

_Carnegie Mellon University —
| | The Robotics Ins_titute
F nglr ' .

. ROBOTICS

| 1@ Technical Report

DISTRIBUTION STATEMENT A
dsivtisiah S o

Approved for public relecse;
Distribution Unlimited

AN W™ W W UWUWNL T I S S TN W T TR Vs il g | A T T L R W T o . e T e e m—— —— —

Model-Based Vision System
by Object-Oriented Programming

Huey Chang, Katsushi Ikeuchi, and Takeo Kanade

CMU-RI-TR-88-3
*
2
w
DTIC ;
; : ' &
The Robotics Institute wil ey
Camegie Mellon University A ELECTEE o
Pittsburgh, P Ivania 15213 : K
T o &, JUN 15 1988 R
/]
February 1988 b
T §
..
© 1988 Camegie Mellon University §
. This research was sponsored by the Defense Advanced Research Projects Agency, DOD, through ARPA "!

Order No. 4976, Amendment 20, and monitored by the Air Force Avionics Laboratory under contract
F33615-87-C-1499 and under The Analytic Sciences Corporation subcontract 87123 modification No. 1.

.

o

X

M el

T HETABUTION SIATEMENT A
o s 83 6 14 040

;| atribution U niimited
! : .-. s — ..-.M—.‘-.,-.--_‘_#

-

Aa PPSP0 e

o

|

T A N NN e A AR MR N N

i

Unclassified ;
SECURITY CLASSIFICATION OF Twi§ PAGE ‘Mhen Dare Entered)« -

REPORT DOCUMENTATION PAGE BEFORE CO oL ETING FORM
t PORT NUMBER 2. VT ACCESSION NO.J| 3. RECIPIENT'S CATALDG NUMBER
“RI-TR-88-3 R0 10 1

4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED

Model-Based Vision System by Object-Oriented Interim
Programming

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(®)
ARPA Order No. 4976
AFA Lab F33615-87-C-1499

T AUTHOR(®)
Huey Chang, Katsushi Ikeuchi, and Takeo Kanade

‘ ON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

9. PERFORMING ORGANIZATI

Carnegie Mellon University
The Robotics Institute
Pittsburgh, PA 15213

.AREA & WORK UNIT NUMBERS

W W reTeTe W

1). CONTROLLING OFFICE NAME AND ADDRESS 12. lt.’e ?:L;;;slggg

ILBgUMI ER OF PAGES

———————————————————— -
FTE MONITORING AGENCY NAME & ADDRESS(If allferent (rom Conirolling Ollice) 15. SECURITY CLASS. (of this report)

Air Force Avionics Laboratory Unclassified

[152 DECLASSIFICATION/ DOWNGRADING
SCHEDULE

e ———————————————————————————
16. VISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, If different from Repert)

Approved for public release; distribution unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse s:as Il neceesary and identily by dlock numder)

20. ASSTRACT (Continue an reverse side If necessary and identity by dblock numboar)

This paper presents an approach to using object-oriented programming for the genera-
tion of a object recognition program that recognizes a complex 3-D object within a
jumbled pile.

We generate a recognition program from an interpretation tree that classifies
an object into an appropriate attitude group, which has a similar appearance. Each
node of an interpretation tree represents a feature matching. We convert each
feature extracting or matching operation into an individual processing entity,
called an object. Two kinds of objects have been prepared: data objects and event

DD ,"S4, 1473 e€oimion GF 1 NOV 8313 OBSOLETE Unclasat Pled

RN SISERIITRI SECURITY CLASSIFICATION OF THI3 PAGE (9hen Dote Sntered)

—— L — L ————— T N W W&

ORI T TR PR TOX U SO P U IO O T O OO R W S S W W WV Y WMWY s 8 v U W N R TS, A RS, gk Ss

(20 cont'd)

objects. A data object is used for representing geometric objects (such as
edges and regions) and extracting features from geometric objects. An event
object is used for feature matching and attitude determination. A ilibrary of
prototypical objects is prepared and an executable program is constructed by
properly selecting and instantiating modules from it. The object-oriented
programming paradigm provides modularity and extensibility.

This method has been applied to the generation of a recognition program
for a toy wagon. The generated program has been tested with real scenes and has
recognized the wagon in a pile.

LR e e af e " n 2" e ¥ " v v

"""""") Ty N PR . MU SR - -, - DAY - - RO Ve
WHYRLRGE '_.g. ,,. ,\'&\" - . ‘r\-_‘:.‘ R ST N N R RN S A *._._\-.-\' : \-\'___._ SO

1

,.
R
e

%

,l g

o AL u}-’yvl -~

kRN Y.

2 SR

AR

Kot

'Nl'h‘,‘: 1;‘r. by a.". [l.;' ™~ ,- { P { Pl'e 1‘5-} .?v ,‘:mxf)-{ -1

19 Lo 55
' A

R A AT AW T e
AP NN RO A0

W >

[RIS

PN 4kd
e

.
»

. e A ARt . o . . . e . . I m .
$igal Ty 010 0N A ipihte A te gl e e TN M Mt tat Sayiaty Sa el ta L Bp Rl oy Gty i DACIMAL ARSI ROAAS R Nl Sl I, AU 40 A 1S A ACICNIC ST N W o R T of0a s ok saia ot piigt o B it gt g g,

o

-

Table of Contents

1 Introduction
2 Generating a Recognition Strategy
3 Object Library
. 3.1 Data Object
3.2 Event Object
3.2.1 Unitary feature object
. 3.2.2 Relational feature object
3.2.3 Attitude determination object
3.2.4 Verification object
4 Generating an Executable Code for a Toy Wagon
5 Running the Code
6 Conclusion
Acknowledge
I. Relational Features
I.1 Region-region Relational Feature
I.2 Region-edge Relational Feature
II. Voting Index 34 La
e

y v I Ty - . o ‘o %y X
(OIS O SN @ S

e

>

!

554 ®
I3

>3

W W W N N et et e s
SOSO O B Wi 0NN da i = e
Y

e

e

1

EXR RRERT

A
S)

gzl

|

1'1, R
"

-.\\\\. .\\.\‘\\"

NET Py, \ g Gt alhe Biadiath b Ll ot ol adl LBt b ol oo gl i LB A LA LA Al |

[T TON PO R RO M ™ e ™ ‘ 10 gt A A LR R L L O REAL S AL Rt LV RS L il 2 o e a iy MR KU VLWL VLR P W W WO AR ~ ;!
¥ [}
:' .
.‘ .Y
¥
by t
N i
Y
N Table of Contents ' 4
- 1 Introduction 1
,. 2 Generating a Recognition Strategy 1 .
5 3 Object Library 3 Bt
& 3.1 Data Object 4
> 3.2 Event Object 6
3.2.1 Unitary feature object 6
3.2.2 Relational feature object 8
) 3.2.3 Attitude determination object 13
! . 3.2.4 Verification object 13
v 4 Generating an Executable Code for a Toy Wagon 13)
4 5 Running the Code . 17 ;
' 6 Conclusion 24
. Acknowledge 29 =
& I. Relational Features 30 2
3 1.1 Region-region Relational Feature 30
M) 1.2 Region-edge Relational Feature 30
[I1. Voting Index 34
" g
Y k
.
P 3
. N
L]
lf
g
4
A
Pt
¢]
o "
o
g
¥)
1
) g
1§ K
by <
N ¢
&
™
‘
L |
AR A A A~ R AR PR B PR B 0 A AR A A SR

e e AT St AR AL ab. BB Af. - PP R . v
Lt Rt 98" VWKLY N N RUN A MR U s G R U D) Y 1V L A A AL AKS ‘ e T T T W N W W N N e -bl\.-

\": [
NV
ROV
hd
2
. . :a"
List of Figures ry
Figure 1: Parallel tracking mechanism 9 i
Figure 2: The model of a toy wagon 14 N N
Figure 3: Interpretation tree for a toy wagon 15 !
Figure 4: An executable program represented by objects: A U node 18 W
) represents an unitary feature matching object; A M node sy
represents a message handling object; A F node represents a N
relational feature matching object; A C node represents a ~3
comparing object; An A node represents a attitude determining tj
object; A V node represents a verification object. e
Figure 5: Input scene for the recognition 19 oy
Figure 6: Needle map obtained by Photometric Stereo 20 [
Figure 7: Regions obtained from the needle map 21 o
Figure 8: Edges obtained by Miwa Line Finder 22
Figure 9: Retrieving feature value from a region. 23 s
Figure 10: Execution of the program 2§ N
Figure 11: Superimposed image of the geometric model onto the image 26 ' Fe
Figure 12: Verification by the extracted edges 27 it
Figure I-1: Relation Between Two Regions 31 i
Figure I-2: X-view of affine transform 32 ‘j:
Figure I-3: Relation between edge and region 7 32 oy
el
o
ou
&
e
K-~
ol ‘-
°
. ".
R
.{ J
Rty
e
°
2]
Nk
<
—— — .
Accession For P
SN . ‘. Mo
NTIS GRA&I . ot
DTIC Tab Q L5
Unanncunced 0 '-';
Juatitioattcen_ o
- T Ry’
Kgr,c\ BY oo ::E)
..:”vs,ftii:) ;_Di stributicn/ e °
_ V"_‘ _Availability Codes oy
T iAw}il and/or u N
1Cist Special A 4
L 2

Fﬂ!mwmnu-mmtﬂnntnm‘u““mumunu R PR P T W MR W WO LWL WO L W WL W WL T T W W e e

A~

\
v

/

/ Abstract

—)Thxs paper presents an approach to using object-oriented programming for the generation of a
object recognition program that recognizes a complex 3-D object within a jumbled pile.

We generate a recognition program from an interpretation tree that classifies an object into an
appropriate attitude group, which has a similar appearance. Each node of an interpretation tree
represents a feature matching. We convert each feature extracting or matching operation into an
individual processing entity, called an object. Two kinds of objects have been prepared: data
objects and evenr objects. A data object is used for representing geometric objects (such as
edges and regions) and extracting features from geometric objects. An event object is used for
feature matching and attitude determination. A library of prototypical objects is prepared and an
executable program is constructed by properly selecting and instantiating modules from it. The
object-oriented programming paradigm provides modularity and extensibility.

This method has been applied to the generation of a recognition program for a toy wagon. The
generated program has been tested with real sce?es and has recognized the wagon in a pile.

~ .) e r‘/ e, ¥R]
}\i‘y,;' 41-.0 ! /\{“{1:[5,) e rn L ! \F ,) (‘-

TR A

g
|
|

Loummmmxmkammommmmmmvmmaﬂm{%&mmms."ﬁ-.mmw X0

T FF XN RATT AT R ICEY IArt Pare) v 7 4 . . - T . .
f VR L YO XN R PR E W RA AR AN T IAT NP W 0 M P88 0 2R 2" 0" 0V ot O Nal a8 08 Yot Vad tay Tak .y) T R R R KT TR T

1 Introduction :

) Traditionally, a recognition program is generated by a human expert who examines the

R - features of an object, develops a strategy for a recognition procedure, and writes a specialized /

0 program for the individual object. However, this "hand writing” of a recognition program "
i

requires a long time for programming and testing. In order to reduce the development time,
several researchers have investigated methods to automatically generate recognition programs

from object models [5, 7, 8]. :

P O

Automatic generation of a recognition program requires several key components:

4 e ohject models to describe the geometric and photometric properties of an object to \
a be recognized;

" e sensor models to predict object appearances from the object model under a given
& sensor, ly
- o strategy generation using the predicted appearances to produce a recognition

s strategy;)

e program generation converting the recognition strategy to executable program. Z

P

This paper concentrates on the final stage, i.e. program generation. We will investigate a way to

automatically generate a program to localize an object under the assumption that its recognition

strategy is given.

Sl N

i

We propose to prepare a library of modules to be used for converting a strategy into a program
¥ and to construct the progra:: by properly selecting modules from the library. Our method is
: based on objsct-oriented programming. An object in object-oriented programming is a
; processing unit, which can store several internal values in slots and execute various operations.
This paper identifies the necessary operations in recognition strategies and prepares the
N prototypes of the objects to execute the strategies in the library. Then, this paper defines a h
N generation method for an executable program by instantiating the objects in the library. Finally, ‘,
.: this paper applies the method to a toy wagon to generate a recognition program and executes the

generated program in a real scene to demonstrate the validity of our method.

¥

2 Generating a Recognition Strategy

This section overviews our recognition strategy which is to be .onvernted into an executable

Far P AN

program in the following sections. Our paradigm is to generate a recognition program to localize -

a 3D object within a jumbled pile under the assumption that its geometric and photometric

_L‘&JJJ‘

W

OIS N SN AT NI LA A A A (L T e

v v N DA X

LA

properties, sensor characteristics, and sensing conditions are known. The basic recognition

strategy is to classify one unknown attitude (one object appearance) into one of several possible

e
wt e

attitude groups by using various available features, and then to determine the precise artitude by

i

solving equations based on the visible features of the group. Each group consists of topologically

._e
“g” g% d

equivalent object appearances and is referred to as an aspect [9].

Strategy generation is performed by recursive sub-divisions of possible aspects by available

features. Strategy generation starts with a root node which contains all possible aspects. After

PN LS RNY

that time, whenever a new classification is done, new nodes are generated. At each node of the

interpretation tree, each available feature is examined to determine whether it can classify the

group of aspects in the node into a smaller number of aspects. If it can, the feature is stored at

L S o 4

the node and subnodes corresponding to classified subgroups of aspects are generated and

connected to the node. Thus, the generated recognition strategy is represented as a tree, which

! we call an interpretation tree. Intermediate nodes of the interpretation tree correspond to

classification stages and leaf nodes correspond to classification into individual aspects [7].

e, 8 e s, -';

Two kinds of features are used for matching: unitary features and relational features. A

2 P

unitary feature can be represented as scalar numbers, such as area and moment of a visible face,

r while a relational feature is a detailed relational description between visible faces, such as face-

- oA
N e

face relations and face-edge relations.

At the completion of the aspect classification, each intermediate node of the interpretation tree

- v e

records the feature to be used for classification, and each leaf node contains one single aspect.

,".' 2% o8 W 4 Idj

Suppose at this moment, we apply the interpretation tree to one object appearancel. Then, we

) can classify the appearance into the corresponding aspect at the leaf node by using the same

;Y "4

features and values recorded at each intermediate node of the interpretation tree.

Y
P

The next task will be to determine the exact attitude of the object within that aspect. Once an

v
.
£

AR

appearance is classified into an aspect, the interpretation tree knows the correspondence between

3y NN

image regions and object faces, in particular the correspondence between the entry region and

the corresponding object face. Thus, once we define the local coordinates of the object face by

the surface orientation of the face, the minimum moment direction of the face, and the

i 8

IMore precisely, one image region of an objcct appearance is given to the interpretation tree. We will denote the
image region from which the process begins as the entry region.

e Pl g r,
'&?1 A v, -

V‘ WA T R 'y, [S N A e ‘*.)-‘.\..\-._-'- l*.“*l"-\.--‘q oo
akhS \ A3 A ol g, > Dy le B e B A

O a2 o'

B2t 057 0% 0a® $a¥ 02" 620 Va? (a® et Ba¥ % 0at Uat Ba¥ far dat fa¥ ol Su® s’ da®ala" S lat. et e et ot ba? e’ ¥ gat ge¥ gov » B Gt aat
. & Al Sl oh 8

3o e
»

i relationship between visible faces, we can recover the local coordinates relative to the world 2
0 because those three piece of information can be obtained from the entry region. Then, the object ;
", _ artitude can be recovered from the local coordinates and the transformation from the local E
X coordinates to the body coordinates of the object. 3
A

After the exact artitude of the object is obtained, the system generates an expected image by
using a geometric modeler. Edges in the expected image will be compared with the edges in the
input image to confirm the recognition. The voting index method provides a way to match the R

expected edges with the extracted edges by giving the reliability of the recognition. For the

voting index see Appendix II.

o
"

3 Object Library N

This section will consider how to convert a given strategy into an executable program. A

recognition strategy is given as an interpretation tree in our system; each node of an
interpretation tree contains a group of aspects and one of the feature matching operations to be
used. We will identify necessary matching operations, and design objects to perform the .

v operations by using the object-oriented programming technique. .

An object in object-oriented programming is a processing unit, which can store several intemnal ")

T

v .

values in slots. We can define demon functions for each slot, where a demon function will be
invoked implicitly when we retrieve a value from the slot or insert a value into the slot. An

object can execute an operation explicitly when we send a particular message to the object. An

S v W B

s

object can be defined as an instance of a prototypical object. An instance object can inherit slot

names, slot values, demon functions, and operations of the prototypical object?

Two kinds of objects are prepared in our object library. One is a dara object, which is used 1n :
» representing geometric objects (such as edge and region) and extracting features from geometric
objects. The other is an event object, which is used to control the matching and determine the

\ exact attitude after the interpretation.

/A{{ .8 4

i o v P J

ZThere are several implementations to the objects. In our system, we use modified Framekit+ originally developed
at Carnegie Mcllon University [2).

CW e W » ot Y ™ P o ™ T T T A T AT r AT AN TR T et R R M s AN .
'! l'!‘l -‘l’u) t". ll."v Q. ‘. .r .r V" f-" 'H Yo J‘.(\..F\. ‘.'-'(\- MYy 'n -‘u',‘ "\-'\- \" -"_'-.-

AN T LA,

3.1 Data Object

Our system uses photometric stereo to obtain region information (6], and uses a line extractor

‘I

to obtain edge information [1, 10]. To represent these pieces of information, we create two

prototypical data objects in the object library. They are :
e Region
e Edge

The following example shows the definitions of the two abstract objects; an abstract-region

and an abstract-edge.

(abstract-region-object
(is-a program-object)
(id-number)
(area)
(maximum-x)
(minimum-~x)
(maximum-~y)
(minimum-y)
(mass-~center)
(moment)
(orientation)
(region-search-distance)
(region-image-model -distance~coef)
(region-image-madel-area-coeaf)
(region-image-nmodel-moment ~coef)
(region-area
(i f-needed-demon region-area-func))
(region-moment
(if-needed-demon region-moment-func))
(region-moment~ratio
(if-needed-demon region-moment-ration-~func))
(region-orientation
(if-needed-demon region-orientation-£func))
(region-region-relation
(if-needed-demon region-region-relation-func)))

(abstract-edge-object
(is~a program-object)
(id-number)
(start~point)
(end-point)
(center)
(length)
(dixrection)
(edge-region~-relation
(if-needed-demon edge-region-relation-func)))

4y P m e s o n - . o it A A o mmm e e e
G A A A A g S A AD e oy, A A A i L T A v x o L Tl

......

.

R RO N LA 6% 8% Ve i e ite i taiatara i gty s tatgia il AN G et alaiaho At Vel AR e L QR TR T @ MY e v 7 W T T W WY

s

3

’

Y
S E :

'.l

[
In the definition of an abstract-region, the is-ag slot represents that this abstract object is a ‘]

’

program object. Slots from id-number through orientation will store image properties of .
“)

individual regions by inheritance mechanism. Slots from region-search-distance through -
region-image-model-moment-coef keep global knowledge such as search distance for relational X |l
b))

features or coefficients between data in the geometric modeler and image data. Slots from
region-area through region-region-relation store features which are obtained from image

properties by demon functions attached to the slots.

We can make instance objects of these abstract objects. When the instance objects are
generated, the image properties of each region or edge are extracted from an image and stored in

the corresponding slots. Thus, for example, an instance object of an region looks like;

(R10
(instance abstract-region)
(id-number 100)
(maximum-x 100)
(maximum-y 100)
(minimum-x 50)

e T Lhe e NS e T e e

i

p)
(minimum-y 50))
(mass~-center (75 75)))
{(moment (8000 200 0.2)) o~
(orientation (0.0 0.0 1.0))) N

iy
"
"
The global knowledge and demon functions can be accessed from an instance object through)
the inheritance mechanism if necessary. For example, if the feature, region-area of the instance :
\

object, R10 is accessed by a recognition process, there is no slot in R/0. Thus, an inheritance P,

mechanism is invoked and the region-area slot of the abstract-region is accessed. The demon i

function attached to the region-area slot of the abstract-region is invoked. Then, the demon ' g

3
function calculates the region-area of R/0 by using region-image-model-area-coefficient in the <3
~
abstract region and the area value in R10 and retumns the feature value to the recognition process. by
%
This mechanism makes the access format of the image features (say, region-area) by the -’;_
recognition process independent of the output format of image properties (say, image area) given : :
*
by a sensor. In particular, this mechanism is convenient when we handle multiple sensors. Each ::
. . . . "

sensor has a partcular outyut format and model-image coefficients. Thus, if we use the ,

conventional method without demon functions, we have to exchange access functions of the N

recognition process depending on sensors and features. However, if we use this demon '.

N
L%
L

T AT T e e e T T T S

RIS

[R AN T

+0gateatnatat §1° et 0n%aNato Sat lat y BaVataanat JBataty” T % k3

v gat T NG S Sa® BaU Q¥ fat
. N -

. gov * da® Ba® 1a® Ma¥
Lo Pl Bl Ball Balt Sl B .0 T8 Rl At Rl oM MM N N n

mechanism, we not need to change the access functions of the recognition process; we only need
to redefine demon functions. Since the global knowledges and all the demon functions are
attached only to the abstract region and the abstract edge, necessary changes are localized at the

level of the abstract region and abstract edge.

The relational features such as region-region or region-edge are also represented by using
demon functions. These relational features are represented relatively with respect to each region.
If we use the conventional method, we have to calculate all relational features with respect to all
regions beforchand, even though most of them are unnecessary. Since the calculation of a
relational feature is expensive, it is desirable to reduce the amount of calculation by using demon

functions which calculate those features only when they are actually required.

3.2 Event Object

Event objects are used to convert nodes of an interpretation tree into executable modules for
feature matching and attitude determination. There are two kinds of features to be used for
matching; unitary features such as area or moment and relational features such as region-rcgion
relation or region-edge relation. We convert a node for a unitary feature into an object wh.h
chooses one of the descendant nodes simply based on the value of the unitary feature of a regio-
On the other hand, we will convert a node for a relational feature into an object which examine -

the similarity of the relational feature to all possible cases and determines the node

3.2.1 Unitary feature object

When a node of an interpretation tree is required to examine a unitary feature, an unitary
feature object is generated and attached to the node. A node of an interpretation tree contains the
information about descendant nodes, the name of unitary feature used for matching, and its
threshold value. According to these pieces of information, a unitary feature object is generated.

Thus, the prototype of a unitary feature object in the object library has the following format.

(unitary-feature-object
(is-a program-object)
(execution)
(threshold)
(branch-left)
{(branch-right))

When an instance unitary feature object is generated, it contains a method name in the

AL gty

A S0

Sx @ R

-
>

A as

3 s

[d AUl @ Y P 3
WSS s R

-
¥

xS’ w' '-'. y VY. -{-"-..

- -,

P,

- -

oo ,{Ar'-;:;:‘r{',). A7 ‘.;x," LI 3

execution siot to be used for the comparison, the threshold value in the threshold slot. For

example, if an interpretation tree requires area comparison at a particular node, then the

following object will be generated at the node.

(branch-example-1
(instance unitary-feature-object)
(execution area-comparison-method)
(threshold 100)
(branch-left branch-example-10)
(branch-right branch-example-11))

The threshold value, branch-left, branch-right, and the execution method name are obtained
from the interpretation tree and inserted by this conversion process. The object library contains

the following function.

(defun area-comparison-method (schema slot entry-region)
{cond ((unitary-comparison
(get-value entry-region ’'region-area)
(get-value schema ’‘'threshold))
(send (get-value schema 'branch-left)
'execution entry-region))
(t (send (get-value schama ’'branch-right)
' execution entry-region))))

(defun unitary-comparison(arg-a arg-b)
(cond ((>= arg-a arg-b) t) (t nil))))
The area-comparison-method is invoked by sending an execution message to the object such

as
. (send ’'branch-eaxample-1 ’'execution entry-region).

In the arguments of the method function, schema and slot are the corresponding schema and slot
L which invoke this function and inserted by the system; in our example, branch-example-1 and
execution are inserted automatically, while the argument, entry-region is given to this method
function directly by the send function3. Depending on the result from unitary-comparison,

another execution message will be sent either to branch-example-10 or branch-example-11.

Similarly, we can define various discrimination functions, where required functions are
dependent on the strategy generation. In the present implementation, the following functions are

prepared in the object library;

region.

R ‘-!' YRty '. '{l'.'"'-'. ‘, ""~ .xr"—.-\'.'-‘.' ‘.'-J‘\".'n(-4'» Y X A . i - * e "-.\‘" o
! B A "~ s 3 » . - B Sy ot Lot a

3Note that (get-value entry-region 'region-area) invokes a region-area demon function attached to the abstraci-

T LAY

W L A o il

o

o m

h)

RS A,

%

LY)
R, R A,

:

--'~J"J"._" -’

. e y v gt gav o 18”82 8a” B, -
ORI TR P AT U W W LT W M W TR WL W MU YO L ML) g M 0 M0 i Mo M 0" ™ a0 L Y 6 A N T T T W T T o T e

G
-

i~
- PR

P

' ® area-comparison-method,

* moment-comparison-method,

-
Pty

¢ moment-ratio-comparison-method,
e surface-characteristic-comparison-method,
¢ surrounding-nth-face-area-comparison-method, y

¢ surrounding-nth-face-moment-comparison-method,

AN

e surrounding-nth-face-moment-ratio-comparison-method,

e surrounding-nth-face-surface-characteristics-comparison-method.

gy

0 It is quite easy to include different unitary features. This only requires addition of the

o

A necessary feature matching methods and the feature slot with the feature extraction demon to the a

library; it is not necessary to modify any other existing objects.

\ 3.2.2 Relational feature object

- -
(R S N g BN

If a node of an interpretation tree is required to examine a relational feature, a parallel tracking

mechanism is adopted which examines the similarity of the relational features of all immediate

P oy 1]

descendant nodes against those of the entry region and sends the next execution message to the

[node corresponding to the highest similarity.

Since the parallel tracking mechanism is relatively complicated, we divide it into the following

K%

A four kinds of objects; a message handling object, feature matching objects, feature matching

[demon objects, and a comparing object. See Figure 1. A message handling object sends

WP XA RS

execution messages to feature matching objects. A feature matching object measures a similarity
between the feature of the entry region and one of the model features with the help of a feature

D matching demon object, and then sends the similarity measure to the comparing object, and a

P EEL O

finish notice message to the message handling object. Once the message handling object receives

all finish notice messages from all feature matching objects, it invokes the comparing object. The

4

Ao

¢ comparing object examines the similarity measures and sends the next execution message to the

appropriate object.

P]

Message handling object

-
- -

, The message handling object controls the parallel matching mechanism. It sends the model)

i
,.!u.! .;.\,. Nl o NN N T T o h sy T s T Vo T N A VT Ty P

vy §VA DS Bl el ot aY UAT LAY $g% it 1 AVa aVE A A" YY PO L an 0l T Sal Vel 0 el | vad Sgh i, L ATy - Y YY) "r"',"’_"t
i

.,
r
c
'
i e
X 9
[4
L] ™
fl U
L} R .1
Message Handling
|
Object -
! 5
\/ ﬂ\ N
Feature Feature Feature s Feature !
Matchin Matehi Matcning [
-4 atching Matching Demon N
Object Object Object — Ob-ect ~3
: o
! \/ "
1 B’
t Comparing (1
K Obiect g
i
'
4
+
4 “
fad
¢ =
')
‘ (]
!
¥ Figure 1: Parallel tracking mechanism
features to each feature matching object one by one. The prototype of the message handling

object has the following format.
(message-handling-object
, (is-a program-object)
X (execution message-handling-method)

. (finished-notice finished-notice-method)
X (sending-object-list)

(finished-object-~list) '
3 (model~-feature-~-list)
‘ (next-node-list) 3
' (comparing-object) ;

P AT R R A AP A A B

The slot, model-feature-list contains the model relational features given from the node of the

) interpretation tree. The slot, sending-object-list contains the feature matching objects, where

¥y
those feature matching object will be generated while the system converts the interpretation tree ;
into an executable code and registers them in this slot, while the slot, finished-object-list contains !
i u
the feature matching object which finishes the matching operation and sends the notice to this ‘
: R .. . ',.
) object. Once all model matching is done, a cnmparing object is invoked. The object to be A
. -
X invoked is stored in the comparing-object slot. :'
: ~
s
]
L) .". 3
B o SN S A RN N AN N NV A 4 N NSy e

s AT aNa AN “al. Vol R B el R ek g " 2 Y - .8 g 9 \ e v ! - WTWT
WA U 2 %9, W \ LERARSA A TN AN LN G AV Ve f A0 A e St S U B IRt autaS Bt et o0 4 o0

f'. \
e
‘I..‘ 10
)
_::r
v The object library contains the following message-handling-method and
;:; finished-notice-method.
4
':2 (defun message-handling-method(schema slot entry-region)
:" (do ((model-list (get-value schema ’‘model-feature-list)
;.:- (cdr model-list))
- (sending-list
o (get-value schema 'sending-object-list)
e (cdr sending-list))
i::' (node-list (get-value schema ’'next-node-list
:‘:. (cdr node-list)))
s ((null model-list))
. (send (car sanding-list) 'execution
W entry-region (car model-list)
;:“ (car node-list))))
;1"‘
Iy Basically, this method sends model relational features one by one to feature matching objects.
o In order to make a correspondence between a feature and the comresponding descendant node,
" this method also send the names of the descendant nodes to the feature matching objects.
:{ (defun finished-notice-method
> (schema slot sender entry-region)
(add-value schema ’'finished-object-list sender)
! (cond((=
o (length (get-values schema ’'finished-object-list))
, _.: (length (get-values schema ’‘'sending-object-list)))
¥ (seud (get-value schema ’'comparing-object)
: ’'execution entry-region))
‘_- This method adds the senders name in the finished-object-list everytime it receives a finished
ol
L, notice from a feature-matching object. If all the feature matching objects, invoked by this object,
v finish their matching operations, the message handling object sends an execution message to the
- comparing object.
i
1 Feature matching object
4;.'!:
5 The feature matching object performs the relational feature matching. The prototype of the
; E feature matching object has the following format.
X
N

EOLMONA N BRI T RO R R WOTR T U RSO RS R ICUION B VOO WU ION s AT O R IO T R "Gh g 00 Aab S on Ad aont b B A LAt A s

11

- - -

[g e g

(feature-matching-object
(is-a program-object)
(execution feature-matching-method)
(finished-notice finished-notice-method)
(comparing-object)
(message-handling-object)
(feature-matching-demon-object)
(node))

P AR

- AVE R

o ol g ot)

Those comparing-object, message-handling-object, and feature-marching-demon-object

contain object names corresponding to those slot names and are filled by the conversion process.
The slot, feature-matching-method contains an execution method to examine the similarity

between the feature sent by the message handler and those of the entry region, while the main

. e aw -

body of the calculation is done by feature-matching-demon-object. These methods can be : |

" -
-

represented in the library as

(defun feature-matching-method R,
(schema slot entry-region model-feature node) -3
{(new-value schema 'node node)

(send (get-value schema ’'feature-matching-demon-object)
'axecution entry-region model-feature)))

-

It S I

24

b (defun finished-notice-method
k. (schema slot score)
(send (get-value schema 'comparing-object)
: ‘add-value
(get-value schema 'node)
score)))

ol

2 W AW

Feature matching demon object -3

o The feature matching demon object measures the similarity between the model-feature and N
features of the entry-region. This function further invokes demon functions attached to the entry 5
region to get either region-region relations or region-edge relations and, then, calculates the
similarity measure between them by using a similarity measuring method. The resulting measure
will be returned to the feature matching object and then sent to the comparing object. The A

prototypical object in the library has the following format;

(feature-matching-demon-object e
(is-a program-object)
(execution)
{(feature-matching-object))

Ol e g

<

.
-
-

The slot, feature-matching-object contains the object name which invokes this object. This will

~L
-

)

)
1
1}
[}

\

SN Yy

LA AT R S e n W ~ R R e Rt R A - - .y~ - vy, e - - . -
N B N S N T A B A I D T N N A P S G N N NN SR

PR O T Tt T T WU N RN L R N A T S o L N U T R T o P C R LY SN B e TV

1
\
1

)
Pal ol ¢
A

12

RALELLL LT

be done by the conversion process. The slot, execurion contains a similarity measuring method.

>
In the present implementation, the following two methods are prepared in the library. s,
e region-region similarity measuring method M‘

?

® region-edge similarity measuring method L'

&)

Similarity of the region-region relational feature and the region-edge relational feature are =
measured based on the voting index. For relational features, see Appendix I, and for voting :ﬁ
indices see Appendix II. If a different similarity measure is necessary, it is only necessary to add \’:
the method to the library and to insert the method name into the execution slot of this object. ;':
b

Comparing object ,:::
» .l’

't.a
Each time a comparing object receives a message add-score with the similarity measure and iy
Ay

the node from a feature matching object, it will add the measure to the score list and the node to
the next node list. After the message handling object finishes its sending to the feature matching i"
. ot
objects, it sends an execution message to a comparing object and invokes it. The comparing ;3_:-.'

M
object examines the similarity measures in slot "score-list", chooses the highest measure, and }.~
sends the next execution message to the node corresponding to the highest measure. Thus, the .-»
prototype of the comparing object has the following format. a:'
(compare-object :’, -

(is-a program-object) '

(execution compare-object-method) ’

(add~score add-score-method) 3
(score-list) o
(next-node-1list)) el

o

2

The following two methods are also prepared in the library.

(defun compare-object-method (schema slot entry-region)
(send (the-most-highest-node

!

(get-value schema ’'score-list) ':

(get-value schema ’'next-node-list)) -3
'execution entry-region)) ik

L

(defun add-score-method(schema slot score node) '.-;.'
(add-value schema ’'score-list score) N
(add-value schema ’'next-node-list node)) HAY

s

where the function the-most-highest-node returns the node in the nicxi-node-list which has the .‘
highest value in the score list. }‘
ﬁ: A
2

L

o
N ' ,’

.

P UG R TR O TR T K R TR L RN WL 4 e i, Lt Ll e Ty

1
)
o

3.2.3 Attitude determination object
An attitude determination object is generated at a leaf node of an interpretation tree. At each .

leaf node, the interpretation tree knows the correspondence between the image regions and

model faces, in particular one between the entry region and the corresponding model face. If we

recover the local coordinate of the model face from the information of the entry region, then we .

b
. can obtain the body coordinate by using the local coordinate and the transformation from the N
E local coordinate to the body coordinate obtained from the geometric model. In our system, we

define the local z axis by the surface orientation, x axis by the minimum moment direction and o]

i visible face relationships. Once this object determines the body coordinate, it sends the

coordinate to the verification object.

The prototypical attitude determination object has the following format.
(attitude~-determination-object

\ (is-a program-object) ¢

b (execution attitude-determination-method) .
¥ (transformation) o
: (verification-object)) A

3.2.4 Verification object
! The verification object is used to generate an expected image and verify the recognition result.

After the exact attitude is determined, the verification object will create an expected image by

I Tt e g g)

using a geometric modeler. From the expected image, it will extract 2D edge informations and g

match this with the input scene to confirm the recognition.
9 (verification-object

(is-a program-object)

(execution verification-method))

4 Generating an Executable Code for a Toy Wagon

; We choose a toy wagon to demonstrate our ideas. We use a geometric modeler to generate a)

model of the toy wagon. Figure 2 shows the model of the toy wagon. It is a relatively complex

Y geometric object. In order to derive possible aspects, we sample possible views and group them

! into 17 aspects based on the visible faces. Figure 3 shows the given interpretation tree, which

BN Y YA

defines the necessary feature matchings at each node.

Once the interpretation tree is obtained, its nodes are converted to objects using the object

library.

LS LD

T (RN IR, T St

I S0 5% T I R TE IS T
™=
s Q% . .-

LR R R MW LS NS P TR LTS IS T S L T S
ARGV AT, AT BT A

R R R R R R oy NIRRT T -0t _~' A P A A A e g g

Figure 2: The model of a toy wagon

'~'_’ At the nodes, bl, bll, blll of the interpretation tree, one unitary feature matching node is)
K converted into one unitary feature matching object. ;
N For example, at node bl of the interpretation tree, the following object is generated.

' (bl

(execution moment-comparison-method)
) {threshold 5000)

(branch-left bll)

(branch-right bl2))

%

where threshold value 5000 is given from the interpretation tree. A similar object is generated at

:, bl11, bl11 by using the same moment feature and different threshold value.

‘: A relational feature feature is matched using a parallel tracking mechanism. A parallel

.: tracking mechanism is divided into four objects; message handling object, feature matching)
:: object, feature matching demon object, and compare objects. These objects are generated when y
> a parallel tracking mechanism is required by the conversion program.

.‘l

;S: Those nodes bJ2,b112,b122,b121,b1111,b1112,b1121,b11121 require relational fearure

::: matching, and thus, are converted into objects to execute the paralle] tracking mechanism. Let s
' t
.;

,I,‘-"\‘d- AR AR

......

’, .
- '\I\J‘\v'.' \ _'J'.:

~2

YRR G

DAL SIAGAD AL, W AR VLG s

L3)

N A AN

R AT T oy Mo a¥ et atd ot _g¥ i ol 00 a8 0,8 Yl ¥ah Tat tah 8o Vo Yol sab Sul Sad Sat vab Vot ea¥ tat el et Al RRatale PugB¥a gV pte iin pte B%s p'e. A in 8% B 079 8° A"

1

-
D

p12

B Tegion=region

{'f.fll'

e -

19

bl
inertis

bl12

o

region-region
?

Py oo o e

bll

, inertis

-

s o Y e

51112
A region=~region

blll
inertis

L N P

A

,A
YT, el

o

7«

- T,

e

T

R SN

Figure 3: Interpretation tree for a toy wagon

|

-
gy

I's

) S T e T A S A A N AT A G AT R

TSRO R PO R TR PO TO IO P Ry N3 Wl ™l % 3% % ™ %l W LR LWL L0 Lo Lo L e Loy o U U VGO UOCETRROLY AU LT] WY L WL N

16

us consider the case of blI2, at which node a region-region relational feature is used in
' matching. The conversion program instantiate one message handling object b112, four feature
matching objects, bJ/I12-f-1,.b112-f4 four feature matching demon objects,
b112-f-1-d,..,b112-f-4-d and one comparing object, bl12-c from those prototypical objects in the
library.

First, a message handling object such as
(bl12
(instance ’'message-handling-object)
(sending-object-list
' ' (bl12~-£-1 bl12-£-2
bl12-£-3 bll2-£-4)
| (finished-object-list nil)
& (model-~feature-~list
: "(((10 20 30 0.5)) ...))
(next-node-list
‘(al3 al2 all bll2l))
(compare-object bll2-c))

) is generated. The contents in the model-feature-list slot is obtained from the relationship
‘ between the entry region and surrounding visible regions consulting a model data base, and
; represent region-region relatonal features such as the distance between regions and the
Y difference between two surface normals. More precise definitions can be found in Appendix I

’ region-region feature.

] Then, four feature matching objects are instantiated from the prototype in the object library.

t One of them looks like this:
' (bl12-£-1
(instance feature-matching-object)
K (comparing-object bll2-c)
! (message-handler-object bll2)
(feature-matching-demon-object
) bll2-£-1-d))

! Then four feature-matching-demon-objects, instantiated from the prototypical object in the

library, have the same format as the feature-matching-objects.

Then, finally, a comparing object is instantiated.

X (bll12-£f-c

) (instance comparing-object)
(score-list nil)
(next-node-list nil))

D)

' -
) N
- . At . .. e i~

) SRS PR N AN T L A S R S A SR TN

........

N UL W U U W W WL W S W P X R A S AN S v gt gut Sat et pat ga¥ gt % ia? ¥ O gat-fob fut g 8a® Ja" ie* St A Rt BT LR

- W W, -l WL LICE A £ oS AN

R 17 >

At each leaf node, attitude determination objects and verification objects are generated. For

¥ example, at node a9, the following two objects are generated. A
’
P (a9 g
9 (instance attitude-determination-object) o
' (transformation
((0.0 0.0 1.0) ...)))
4 (verification-object aS-v))]
d “
7] (a9-v e,
» (instance verification-object)) by
Note that some of the instance objects do not have execution slots, which are inherited from q
. . . . Y
‘ their prototypes in the object library. 3
¥ .
! Similar operations are applied to all nodes in the interpretation tree and give the executable $
. program as shown in Figure 4. This conversion program is implemented using a rule ;
& representation language OPSS5 [4]. '.
*0 A
’ p
! 5 Running the Code ‘
: This section shows an example of the obtained program running on a real scene. Figure 5 is R,
) the input scene for recognition. Figure 7 shows those regions whose surface orientation can be :
) determined as shown in Figure 6 by using photometric stereo. By using a dual photometric .
¢ “
stereo system, we can determine the depth of each region. We also use an edge extractor. Three
) P
images obtained under different lighting conditions are orocessed. The resulting edges are ;
3 shown in Figure 8. The system instantiates region objects and edge objects for all the regions E
u and edges in the scene by using the abstract-region object and the abstract-edge object in the p
object library. A
: ;
‘ The largest region at the top of the pile is selected as the entry region (in this case, region r90 2
> in Figure 5(c)) and sent to bl.
(send 'bl ’'execution entry-region)
j' where entry-region = R90. Then, since bl’s execution slot contains the moment-comparison-]
;. method, the moment comparison method is invoked. This function sends a message to region '
R90 to get region-moment, which can be calculated by the region-moment demon function and x
'y the moment value of R90. Notice here that the moment in an image is converted into a moment 7
value in the geometric model by the demon function. See Figure 9. v
9, AV ¢
R . 1
[N
; 4
Y P T T S T A T S Oty

T W

e

>

S A W W B

bll

RN

e)

Figure 4: An exccutable program represented by objects: A U node represents :

f an unitary feature matching object; A M node represents a message handling "
| object; A F node represents a relational feature matching object; A C node .
= represents a comparing object; An A node represents a attitude determining o
object; A V node represents a verificanon object. o

’

A S S L

LA o
GG

iL""fﬁ\."h'.“&"_\,._‘;,'-_'h,‘-'.\'.‘\.‘vi_\',‘- N WO A T Y TR T A N TR R R NG T T T M T T T R T I T T Y R T R W W W W R W T U W e W e

19

Figure 5: Input scene for the recognition

AN W WA AN A A A N)

Figure 6: Needle map obtained by Photometric Stereo

" cate aia h0a bin’ BV - aua AV ¢ , Ty . ? Bat
. PRI R R R R T R Y 12”250 4% a%0 2 0 3 02" 0.8 Vil $.0 120700 Va0 7, wal ta) v 'Y PR TRV o 850 $%s 4R PP ¢ 1,
K] ‘bR K P 2 A A

[
3 4
’ '

"
21 ‘

¢
4
:)
)
¥
¥ ..‘
1
: L]
! : '
[} A
}
‘ '
\
4!
) 3
v %
3
[3
; 4 Ond]
T3
)
\ .:‘
.“
&
]
h
)
]
"
i,
o]
K,
\)
4' o
' [
: e
' b
[i
:)
\ 7
-
it
4 ; (
-
: -
o
]

1 Figure 7: Regions obtained from the needle map

FEEFELEA T B SNI N

-
[N
.l
A
\
M
* .
L]
N
i ‘e
- - PO Y T L LT A VU N Sl WL Wl T S i "._'_-"‘."\ ..-"~"..‘
e . e " T KA YA DRI W v . LI T P T) o FICR A NS "
YA fffrr~r~rrr..rr\ .
X o Ps. TV TV Ko .-A» X 5) K X

e e RS S A Sdul 2 2 o' FrEy AN = Sl SN s 5 T [et Jagegoie ’.7.
o
X

5
.‘
L]
-l
o
>
b
b3
J
R

FRTR

P Y
-"\'\'\l\-

N T
y \.'4-‘ Y

.\.-.

Figure 8: Edges obtained by Miwa Line Finder
B __.k‘._\.

I Narer BT P e e~ - - A _we s 95 - g an Iy pn NS [P e e, T = [T e . PSS . AT o) 3 _Bas - - o=

ABSTRACT-REGION
REGION-IMAGE-

MODEL-MOMENTw
v (DEMON)

COEF
REGION-MOMENT (SEND 'B1 "'EXECUTION 'R90)

: (GET-VALUE 'R90
REGION-R90 / 'REGION-MOMENT)

MOMENT

(SEND 'B11 'EXECUTION 'R90)

DATA WORLD

Figure 9: Retrieving feature value from a region.

LS N '.'T_\'\“f-.'_\"' u"x"-.* a7
N L L} L)

L)
.
.
-
~

v el gt

3 TOUR R RN NE At a0 4 20,270 1 020" 8,0° .0 V0 Yal ¥h Yah rah ad tad v ML PN U SRR U o W € VLV TR

24

From the comparison between the threshold value in the unitary feature matching object, b/
and the feature value obtained from R90, the object sends an execution message and the entry
region to bl1. The object b1l repeats the similar operation and sends an execution message and
the entry region to b/12. Since b112 is a message handling object, it send messages b112-f-1,
b112-f-2,b112-f-3,b112-f-4, one by one with model relational features. At each feature matching
object, a similarity measure for the region-region relational feature obtained from the region-
region relationship (R90 and R85) against one model relational feature, is obtained and sent to
the comparing object, bl12-c. From the accumulated score, the comparing object, bl12-c send

an execution message to node a// with the entry region.

At this noint, the system finds the correspondence between the entry region and the roof face
of the toy wagon. The attitude determination object then determines the local coordinates of the
face by using the surface normal, the minimum moment direction, and the region-region relation
between R90 and R85. The bold lines in Figure 10 indicate the tracks of the message passings.
Finally, the body coordinates are recoverted using the local coordinates and the transformation
between the roof face of the toy wagon and the body coordinates. The atttude determination

object, all sends an execution message to al/-v with the entry region and the body coordinates.

The verification object, all-v generates an expected image (Figure 11) by using a geometric
modeler based on the body coordinates, extracts edges from the expected image which are longer
than a certain threshold, and compares them with the edges from the line finder. The result is
shown in Figure 10(c), where the bold lines indicate the expected edges and thin lines indicate
the image edges. The voting index obtained from this matching represents the reliability of the

recognition. For this example, the reliability of the recognition is 0.8.

6 Conclusion

This paper has discussed how various modules are prepared and used for generating a
recognition program from a given interpretation tree so that we can generate a recogniuon
program from a geometric model automatically. We designed the module set as the object
library using object-oriented programming. The object-oriented programming paradigm provides
modularity and extensibility to the object library. The objects in the object library are divided
into two categories: data objects and event objects. A data object is used for representing

geometric objects and extracting features from geometric objects. An event object is used for

r R AT Vel e Caa € i ¥ ” RN AT T YT W e A -'-'.'-“."\'--'\‘.\" N ..'..-- -'-.c".-"l.'.‘!“-'i
l'c‘u"\.l.i .q‘ ,.-,.n‘. e . "'c. r‘.‘l.‘lA-- . .' .'\ * .‘) '. XalXal PP 3 5 LV

YW LS

{{ - s‘u‘\‘_s'-i

)

»

o

o E R R

~
3

O
e

o>

O A

T g

v

1w L

Y

.
A

TS
.
o -('

s 1"';h

IR L PR S L

«

l’l,ﬁﬂvﬂﬁ'-f‘f',

”"na

—————"00 :

M1

y, & N

»l?

«

&S

-ljl f-

Ao

i “-'5 Sw taiw

)

|

a0

.
AN

v .

. wv

e

(23]

¥
&l

v s,

R TN

LN R

L
R DR A ot

altit

ISR AT
-,

-
- .
A5

e e e
PRy

Figure 10: Execution of the program

2%

s

¥
A

-

T 5

<5y

TIea

0 St Ot P IR L oo ' P »
LA A N LU0 S AN LA O D A i s N NG RGN AN AN

-'.F‘ v*“,‘\ " -fy‘.’h

P TR TN U T NN N N N LW LN T T N LN P TP TP T U LA LTI T LT T AT TS LTI LM T T TR TR L TR T e e e T SRR - w o

| - I;Y<

Sl

T >

i

-

DrrFrA DR

*ut "

AN X S Ay

Can . Sis st gis S B o‘-‘a'l‘x.l.l“‘-

RO

T T

x

B

"™ T

Figure 11: Superimposed image of the geometric model onto the image

r_

e _w_m_w =~

S

I R T U U P W P R T U R N R T A O IO T RO W O W L WL W T W W W L W L W W e WL L W L AT

. cap tat el Bl ‘abs A% kBa 8% AVa Ata AY, ")
598 et £a% 02" §2¥ 0% Ha¥ . gt ¢ v . ' et a0 8" .' TR AT R RATY wal o sl i tag v .\s‘ 4,28 5y | r A f

| i

' i

i .!‘

; -

' N

4

L) 27

; S
P
by

(o

1

[}]

' .
-~
-

D) \

\ \ ~“ A
"t

3 \ Pt

! —
!
' s
(
LY
3 b
: ;
L] 'h
“.
=
h-,
-
8
'\-
4 ‘..‘
Figure 12: Verification by the extracted edges X
»
y ~
+ B
-
:]
v
! y
' v
: -
)
>
Pl
by
y
AT etk o'ty gt A AN A NS AN N O XD < I KN O oI L o M %

28

feature matching and attitude determination. We generate an executable program by properly
selecting and instantiating modules from the object library. This method has been applied to the
generation of a recognition program for a toy wagon. The generated program has been tested
with real scenes and has recognized the wagon in a pile. The generation method developed here

provides a useful tool for the automatic generation of recognition programs.

I TR WL WL)

Ly
d

29

Acknowledge
The authors thank Keith Gremban, Yoshinori Kuno, and the member of VASC (Vision and

L|

Autonomous System Center) of Carnegie Mellon University for their valuable comments and .:
. : ¥
discussion. 5

"I

) ¢

4 :

. 3

D]

L) .

y '

s

A

\

Al

'r .

'D

X K

! e

B)

N

i

o :

‘ *
- -.

g L
» ra

,

i 3

e 2

X4 - \

&'}

73 J]
* .
1 .

i ! A

M t

' 3
Ny)
\)

1 t

L)

U

" o

[.‘

X ,

W A

»

{
17y, 8% Wy 1)y g m LS TP L) LT R LTATL) N R S T R R R T I R Lt T I ¥ S L R - - .
AN AN et ._\’.._ AT -l'v{' AL LTy \ RS "&' __,\.,_.,‘.\ ~ .\._. (o _'.- . -.\ .‘__

N .

) . , - Y Dy - - LY 7, +, & - A » | * ¥ F 0y 8 , .,
b R PRI W ¥ g avi a'd " M VR VAN AN WA VAT AN ¢ . \J a'] 3,) %
?
5
‘,

: 30
?
I. Relational Features 3
)
:; I.1 Region-region Relational Feature
;3‘ The relationship between two regions can be described as (Figure I-1):
jn: e d : The distance between the mass centers of two regions. f
a e a : The angle between the minimum moment directions of two regions. _
é e 3 : The angle between the surface orientations of two regions.
, e A : The area of the region other than the entry region.
&
R We form a four-dimensional feature vector (d a B A) to represent the relational feature .
R between the entry region and the other region. A demon function will be invoked when feature |
? extraction is requested. Then a set of feature vectors relative to the entry region are found. These ;
_.' feature vectors will be used in feature matching. !
f}, In the four-dimensional feature space (d @ 3 A), we test a hypothesis by comparing all the :
» feature vectors with the predicted feature vector that is generated by the model. If they are close '
f in the four-dimensional feature space, we accept this hypothesis, .nd conclude the feature -
matching process. If the matching fails, we then reject the hypothesis, and generate another
~ hypothesis. This hypothesis generation and test can be done by using a parallel tracking schema.
3 f
'. I.2 Region-edge Relational Feature
. We use a line finder to obtain 2-D information about an edge from its projection onto the
N image plane. In order to recover the 3-D information about an edge, we will transform the 2-D D
edge into 3-D space via an affine transformation. Let the surface orientation of the entry region
- be (p q), where p= u,/u,, and q= uy/u,. The affine transformation P will transform an edge
. ’
: surrounding the entry region to the 3-D plane that the edge lies on. "
- Vi+p? pq/N1+p?)
P=l 0 lep+@dN1ep?
: 0 0]
“" Figure I-2 shows the X-view of an affine transformation. The new view direction is on the Z' 3
n axis. We can determine the original length of an edge from this view direction.
! ‘

- -
-

-
LN

¥
¥
\

! e e A A K -8 o " - AP p PR " . o e m th P o e P A SRR " " A N
¢ - o W oo ; . o) \y ¢
OO S R ol e oA L S ! oty T, e h O

AL

o= NP AP At e i la S a e SR

- - wta . -

31

srea : A

I !
. '.'-‘.t!l:

’ 1' l..

target regton

r »{:i'v,‘-‘r. ~

P4

T‘;'] 1

=y X 2 41 @
OO0

L7

19
4

"7

Figure I-1: Relation Between Two Regions

-) - o o 'l L P
i, AT A VA TR AT TR

RN W S W W WO WL R W W N O N N TN N L N I W N W L R, W W W W WL WO T WU N MU L WL WL WL WL W W, W R WU N Wy

32

Light Source

(=]

V)/ / px+qy+z=0

A\ 2

Figure I-2: X-view of affine transform

After the affine transformation, we can use four parameters to describe the relationship

between an edge and the entry region (Figure I-3).

€= =gy A
«

\

|

|

|

! Figure I-3: Relation between edge and region
o r: The perpendicular distance between an edge and a region.

kﬁmmmurwnm LT LT FLIS T TR TV RN S PRV R RURV UL BV ETL VAR ERTES LSRRIt T LR T, UV s Ve NV N e O

N A Y AU VXWX W M ™ Ny -.v'r 2% 0g®ala? NE e a®n SN0 2 2t9 AVR 2" 6.0 0,0" V.0 V.8 V.8 04 Veh Y 0 Nl 1k, ORI - gta gia-sie Bua SAe vy

\
]
¢ .
' ¢
\ 34
¢ q
:
II. Voting Index :
y We generate region-edge relational features for the edges within a cenain distance from the 3
entry region. These features will be compared with the model’s region-edge features generated) é-
r)
in advance. The length of an edge in the scene is considered as a vote for the presence of a 5
model edge if the following conditions are satisfied : A
. ¢ The value r of the edge is within a certain range of the model edge r_, or say, -
. -
p: 091, <r<llr,. by
e The value " of the edge is within a centain range of the model edge 6., say, M
" -0.2+48,, <6 <0.2+6,. =
. 33
; e The value of w of the edge is within the maximum and minimum values of the "
4 model edge w, : ‘
A
(Dm_l.ﬂ¢r_m’n(a)--9_)<w<mm+1_ﬂ-r—k:n(m_-0_) 2
r- ¢ The length 1 of the edge is less than the length 1, of the model edge, ;
: 1<1,. ;
- "
). - ‘
; .
)
)
v N
A ::
: &
a, ‘l
i : “)
¥ W
N
~
fi b
N ~
¥ ~
k) =

N R e T T A g A e T A A B o
- . 3 R L - B g » L o« . " « - '+ o i .) " . i

ot

. N . " . ek . . Py . e ek A Ak , :
X UMW v w - e B Nt Sal Vet ¥ad Tt N Ml AR AR LA Sl Al G, A AR AN ANA NS A o g AR A et e baatia et g ot St sel gat g,

-5: 9 ; v..";‘;

wa

33

¢ 0 : The angle from the minimum moment direction of a region to the perpendicular
line of an edge.

¢ : The angle from the minimum moment direction of a region to the middle line of
an edge.

YA Y

e 1 : The length of the edge after an affine transforrnation.

PR e
X

For all the edges within the search distance, we generate feature vectors relative to the entry

t“ \l' v

L]
A

region. For each model edge, we search the feature vectors in the scene to find the voung index

[3]. The summation of the voting index is compared with the total length of the model edges

Y

that surround the entry region. If the values are close, then we conclude this matching is

-
'

successful, otherwise we reject this hypothesis and generate another hypothesis.

LT ®

RN O

o

PPN L s
I" Y 5 ".s:“'.'_':'.'ls.l'n'

5 %

TEECALT® L,

PSRN AL

«
A

XAx

k 4
v - Q'

1
5.
o, ,..',‘_,‘ oY

ATy T A i T A N AT N A

R

-

R (]

Y

Y,

y 2]

[

b

h o

’l

_ (3]

§

2 [4]

b [5)

:

Wy

: (71

4

& (8)
9

? [9]

(101

A

kv

v

> 37 A%a BT, AV Y, T4V,

35

References

Canny, J. F.
Finding edges and lines in images.
Technical Report AI-TR-720, Antificial Intelligence Laboratory, M. 1. T., 1983.

Carbonell, J. and Joseph, R.

Framekit+:A knowledge representation system.

Technical Report CS-TR, Computer Science Department, Camnegie Mellon University,
March, 1986.

Chang, H.

A Vision Algorithm Generator by Object-Oriented Programming.

Technical Report, Department of Electrical and Computer Engineering, Camegie-Mellon
University, Pittsburgh, PA, July, 1987.

Forgy,C.L.
OPSS5 User’'s manual.
Technical Report CMU-CS-81-135, Computer Science Department, Carmnegie Mellon

University, july, 1981.

Goad, C.
Special purpose automatic programming for 3D model-based vision.
In Proc. Image Understanding Workshop. DARPA, 1983.

Ikeuchi, K.
Determining a depth map using a dual photometric stereo.
The International Journal of Robotics Research 6(1), 1987.

Ikeuchi, K.
Generating an Interpretation Tree from a CAD Model for 3-D Object Recognition in Bin-

Picking Tasks.
International Journal of Computer Vision 1(2), 1987.

Ikeuchi, K. and Kanade, T.
Towards automatic generation of object recognition program.
Proc. of IEEE (11), November, 1988.

Koenderink, J. J. and Van Doom, A. J.
Geometry of binocular vision and a model for stereopsis.
Biological Cybernetics 21(1), 1976.

Miwa, H. and Kznade, T.
Line extraction.
Intemal Memo., in preparation, Camnegie-Mellon University, Pittsburgh, PA, 1957.

' .)' ’ -r J«J' oA '-_.r "..-_.-_:.') -r,;.- " .-_ A ~_.~ .'\"1'_;-' St W

